This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

REACTIONS WITH CYANOTHIOACETAMIDE AND ITS DERIVATIVES: SYNTHESIS AND CHARACTERIZATION OF SEVERAL NEW PYRIDINE AND ANNELATED PYRIDINE DERIVATIVES

Fawzy A. Attaby^{ab}; Sanaa M. Eldin^c; Wahid M. Basouni^c; Mohamed A. A. Elneairy^{ab}
^a Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt ^b Department of Science, King Khalid Military Academy, Riyadh, Saudi Arabia ^c Department of Pesticidal Chemistry, National Research Center, Dokki, Giza, A.R. Egypt

To cite this Article Attaby, Fawzy A. , Eldin, Sanaa M. , Basouni, Wahid M. and Elneairy, Mohamed A. A.(1996) 'REACTIONS WITH CYANOTHIOACETAMIDE AND ITS DERIVATIVES: SYNTHESIS AND CHARACTERIZATION OF SEVERAL NEW PYRIDINE AND ANNELATED PYRIDINE DERIVATIVES', Phosphorus, Sulfur, and Silicon and the Related Elements, 108:1,31-39

To link to this Article: DOI: 10.1080/10426509608029635 URL: http://dx.doi.org/10.1080/10426509608029635

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTIONS WITH CYANOTHIOACETAMIDE AND ITS DERIVATIVES: SYNTHESIS AND CHARACTERIZATION OF SEVERAL NEW PYRIDINE AND ANNELATED PYRIDINE DERIVATIVES

FAWZY A. ATTABY,‡,§ SANAA M. ELDIN,† WAHID M. BASOUNI† and MOHAMED A. A. ELNEAIRY‡,§

†Department of Pesticidal Chemistry, National Research Center, Dokki, Giza, A.R. Egypt; ‡Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt

(Received May 8, 1995; in final form July 22, 1995)

Several new pyridines and annelated pyridines were synthesised via the reactions of some pyridinethiones with a variety of activated halogenomethyl containing reagents and hydrazines. Structures were established on the basis of elemental analysis and spectral data.

Key words: Cyanothioacetamides, chloroacetyl derivatives, chloro-ketones, pyridines, annelated pyridines.

INTRODUCTION

Cyanothionacetamide (1) and its derivatives (3) are versatile reagents and their utility in heterocyclic synthesis has gained considerable recent attention.¹⁻⁹ The reported biological activities of pyridines and annelated pyridines as antimycotic,¹⁰ antidepressant,¹¹ fungicidal,¹² antiarrhythmic,¹³ and antilipemic¹⁴ agents stimulated our interest to synthesize a variety of these heterocycles. The arylidene cyanothioacetamides 3a,b seemed to be excellent and unique starting materials to fulfill this objective.

RESULTS AND DISCUSSION

It has been found that the arylidene derivative 3a reacted, base catalysed, with acetylacetone (4) for 3 h to yield a product of molecular formula $C_{13}H_{12}N_2S_2O$ and m.p. 188°C. This formula corresponded to the addition of 3a to 4 followed by the loss of water. The IR (cm⁻¹) spectrum of this product showed the presence of NH (2350), CN (2210), acetyl CO (1700), C=S (1540) and saturated CH₂, CH₃ (2980) groups. Its mass spectrum gave m/e = 276. Moreover, its ¹H-NMR spectrum (δ ppm) revealed among its signals those of pyridine H-4 (d, 4.1) and pyridine H-3 (d, 4.4). Based on

[§]On leave to Department of Science, King Khalid Military Academy, P. O. Box 22140, Riyadh 11495, Saudi Arabia.

the above data, this reaction product was formulated as 5-acetyl-3-cyano-6-methyl-4-(2'-thienyl) tetrahydro(1H)pyridine-2-thione (5a).

Conducting the reaction between <u>3a</u> and <u>4</u> for 5 h resulted in the formation of another reaction product with m.p. 266°C as the sole product. This reaction product could, be formulated based on analytical and spectral data as 5-acetyl-3-cyano-6-methyl-4-(2'-thienyl)dihydro2(1H)pyridine-2-thione (6a) (cf. Experimental Part).

The structure of 5a was further confirmed either by boiling its solution in ethanol for 2 h in the presence of TEA to yield 6a or its independent synthesis via the reaction of 1 with the ylidene derivatives of acetylacetone 7a (cf. Chart 1) as previously reported15 for similar ring systems. In contrast to its behavior towards 3a, acetylacetone (4) reacted with the furfurylidene derivative 3b either for 3 h or 5 h to yield the same product in each case which was formulated, based on elemental analysis and spectral data, as 5-acetyl-3-cyano-6-methyl-4-(2'-furyl)-tetrahydro-2(1H)-pyridine-2-thione 5b (cf. Experimental Part). Attempts to obtain the corresponding 6b were unsuccessful under a variety of reaction conditions. Compounds 5a,b and 6a were chosen as the starting materials for the product study owing to the presence of more than one active site. Thus, each of 5a,b and 6a reacted with hydrazine hydrate to afford sulfur-free reaction products. The IR spectra of these products were free from the nitrile absorption bands. Their ¹H-NMR spectra revealed the presence of NH and NH₂ signals at about 4.8-5.0 δ ppm. On shaking compounds 10a and 10b with deutrium oxide (D_2O) the singlet broad signal at δ 4.8-5.0 ppm which corresponds to the 3H of both NH and NH₂ groups disappeared and two new signals appeared: The first is the singlet signal at δ 4.5 ppm for 1H of DOH due to the exchanging proton at NH with D₂O and the second is the singlet signal at δ 4.7 ppm for 2H of H_2O due to the exchanging protons at NH_2 with D_2O .

NC-CH₂ -
$$\overset{\circ}{C}$$
 - NH₂ + $\overset{\circ}{\bigvee}$ CHO

1

2 a , b

3 a , b

Et OH

Et ₃ N

4

Ar-CH=C

CSNH₂

• CH₃ - $\overset{\circ}{C}$ - CH₂ - $\overset{\circ}{C}$ - CH₃

0

Ar

Ar

Ar

CH₃ - $\overset{\circ}{C}$ - CH₂ - $\overset{\circ}{C}$ - CH₃

0

Ar

CN

Ar

CN

Ar

CN

Ar

CN

Ar

CN

H₃C

Ar

CN

H₃C

Ar

CN

H₃C

Ar

CN

H₃C

Ar

CN

Ar

COCH₃

Ta , b

CHART 1

These reaction products were formulated as the pyrazolo[3,4-b]pyridines <u>10a,b</u> and <u>11a</u> respectively, most likely formed via the intermediacy of the non-isolated hydrazides <u>8a,b</u> and <u>9a</u> respectively.

An unequivocal support for the structure of each of 10a,b and 11a was achieved via their synthesis by first formation of the corresponding 2-S-ethylpyridinethiones 12a,b and 13a respectively by the reaction of each of 5a,b and 6a respectively with ethyl iodide. Compounds 12a,b and 13a then reacted with hydrazine hydrate with the loss of ethyl mercaptan and cyclization under the applied reaction conditions to yield the corresponding 10a,b and 11a respectively (cf. Chart 2).

5a,b

H.H.

$$Ar$$
 Ar
 Ar

Structures of $\underline{12a,b}$ and $\underline{13a}$ were, in turn, established by elemental analysis and spectral data (cf. Experimental Part). Furthermore, the synthetic potential of each of $\underline{5a,b}$ was demonstrated via their reactions with a variety of chloroacids, esters and

amides <u>14a</u>–<u>d</u>. Thus, it has been found that <u>5a</u> reacted with chloroacetic acid (<u>14a</u>) to afford a product of molecular formula C₁₅H₁₄N₂S₂O₃ corresponding to equimolecular, addition and a loss of HCl. Its IR spectrum showed OH, two CO and CN groups while its ¹H-NMR spectrum revealed signals of two CH₃, CH₂, pyridine H-3 and H-4 in addition to thienyl and OH protons in the expected position (cf. Experimental Part). The reaction product was assigned the 2-carboxymethylthiodihydropyridine structure <u>15a</u>.

Analogously, ethyl chloroacetate (14b), methyl chloroacetate (14c) and chloroacetamide (14d) reacted with 5a to afford the corresponding 2-S-alkyl-thiopyridine derivatives 15b-d respectively. Structures assigned for each of 15b-d was based on correct elemental analysis and spectral data as for 15b previously described (cf. Experimental Part). Further proof for the structure of each of 15a-d came from their cyclization by the action of boiling ethanolic KOH to yield the same product in each case which was formulated as the thieno[2,3-b]pyridine derivative 17a. The formation of 17a in this reaction is assumed to proceed via the initial formation of the non-isolable thieno[2,3-b]dihydropyridine derivative 16a which underwent auto-oxidation into 17a under the applied reaction conditions (cf. Chart 3).

5a, b

CI - CH₂ COX

15a,e : X = OH
15b,f : X = OEt
15c,g : X = OMe
15d,h : X = NH2

CH₃

$$CH_3$$
 CH_3
 CH_3

CHART 3

In support of this idea, the ¹H-NMR spectrum of <u>17a</u> was found to be free from pyridine signals. Furthermore, <u>17a</u> reacted with acetic anhydride to yield the thieno[3,2-d]-isoxazino[2',3'-b']pyridine derivative <u>18a</u> whose IR and 1H-NMR data were in good agreement with the assigned structure (cf. Experimental Part). In the same manner, <u>5b</u> reacted with each of <u>14a-d</u> to give the corresponding to 2-Salkylpyridines <u>15e-f</u> respectively. Structure of <u>15e-f</u> was also based on both elemental analysis and spectra previously reported for 15a-d (cf. Experimental Part).

Compounds 15e-h could also be cyclized into the same reaction product in each case which was formulated as the thieno[2,3-b]pyridine derivatives 17b most likely via the intermediate 16b. The structure of 17b was further established by the reaction with acetic anhydride to yield the corresponding thieno[3,2-d]isoxazino[2',3'-b']pyridine derivative 18b which gave correct elemental analysis and expected value in its IR and 'H-NMR spectra (cf. Experimental Part). Work is now in progress to investigate the behavior of 5a,b and 6a towards the action of some halogeno ketones, esters and active methylene reagents.

EXPERIMENTAL

All melting points are uncorrected. IR spectra in KBr discs were recorded on Perkin-Elmer FT-IR type 4 and Pye-Unicam SP-1100 spectrophotometer. H-NMR spectra were recorded on Varian EM 390-90 MHz, Gemnaii 200 MHz and Brucker WP-80 spectrometers using CDCl₃, DMSO-d₆ and (CD₃)₂CO as solvents and TMS as an internal standard. Chemical shifts are expressed as δ ppm units. Mass spectra were recorded on Hewlett-Packard GC-MS type 2988 series A using DIP technique at 70 eV. Microanalyses were performed at the Microanalytical Center of Cairo University using Perkin-Elmer 2400 CHN Elemental Analyzer. Compounds $\underline{3a,b}^{16}$ and $\underline{7a,b}^{15}$ were prepared following literature procedure.

Synthesis of 5a,b and 6a: (General Procedures)

A) A solution of acetylacetone (4, 0.01 mole) and each of 3a,b (0.01 mole) in ethanol (30 ml) containing TEA (0.05 ml) was heated under reflux for 3 h. The product obtained after cooling was filtered off and crystallized from ethanol to give 5a,b respectively (cf. Tables I and II).

B) Performing the reaction between $\frac{4}{50}$ (0.01 mole) and each of $\frac{3a}{50}$ (0.01 mole) for 5 h and isolation of the products as in (A) gave $\frac{6a}{50}$ and $\frac{5}{50}$ respectively (cf. Tables $\frac{1}{50}$ and II).

C) Compound <u>6a</u> was also obtained by heating under reflux a solution of <u>5a</u> in ethanol for 2 h in the presence of TEA.

D) A solution of $\underline{1}$ (0.01 mole) in absolute ethanol (20 ml) containing TEA (0.5 ml) was treated with each of $\underline{7a,b}$ (0.01 mole) and heated under reflux for 5 h. The solid product obtained after cooling was crystallized from ethanol to give $\underline{5a,b}$ respectively (cf. Tables I and II).

Reactions of Ethyl Iodide with 5a,b and 6a: (General Procedure)

A solution of each of 5a, b or 6a (0.01 mole) in ethanolic sodium ethoxide (0.01 mole) in ethanolic sodium ethoxide (0.01 mole), prepared from the equivalent amounts of sodium metal and ethanol, was treated with ethyl iodide (0.01 mole) and heated under reflux for 5 h. The solid product obtained on pouring onto cold water was filtered off, washed with water then crystallized from ethanol to give 12a, b and 13a respectively (cf. Tables I and II).

Reactions of Hydrazine Hydrate on Each of 5a,b, 6a, 12a,b and 13a (General Procedure)

A mixture of <u>5a,b</u>, <u>6a</u>, <u>12a,b</u> or <u>13a</u> (0.01 mole) was treated with an excess of hydrazine hydrate (2-3 ml) and heated under reflux until the odor of H_2S or C_2H_3SH ceased (4-5 h). The solid product obtained after cooling was filtered off and crystallized from ethanol to yield <u>10a,b</u> and <u>11a</u> respectively (cf. Tables I and II).

Reactions of <u>5a,b</u> with Each of <u>14a-d</u>: (General Procedure)

A solution of $\underline{5a,b}$ (0.01 mole) in sodium ethoxide (0.01 mole, prepared from the equivalent amounts of sodium metal and methanol) and of $\underline{14a-d}$ (0.01 mole) was heated under reflux for 4-5 h (TLC mon-

TABLE I
Characterization data of the newly synthesized compounds

Comp.	Mol. Formula	Yield %	Colour	M.P. (° C)	% Analysis, Calc/found			
					C	H	N	S
<u>5a</u>	C ₁₃ H ₁₂ N ₂ S ₂ O	70	red	188-9	56.52	4.34	10.14	23.18
	0 77 11 00	CO	11	260.1	56.5	4.4	10.2	23.2
<u>5b</u>	$C_{13}H_{12}N_2SO_2$	68	yellow	260-1	60.00 59.9	4.61 4.7	10.76 10.9	12.3 12.2
<u>6a</u>	C ₁₃ H ₁₀ N ₂ S ₂ 0	65	yellow	266-8	56.93	3.64	10.21	23.35
					56.8	3.7	10.1	23.4
<u>10a</u>	C ₁₃ H ₁₄ N ₄ SO	70	orange	240-2	56.93	5.10	20.43	11.67
					56.9	5.2	20.5	11.6
<u>10b</u>	$C_{13}H_{14}N_4SO_2$	70	orange	234-6	53.79 53.8	4.82 4.9	19.30 19.3	11,03 11.1
11a	C ₁₃ H ₁₃ N ₄ SO	68	yellow	248-9	57.14	4.76	20.51	11.72
	013-13-4-0				56.8	4.4	20.2	11.6
<u>12a</u>	C ₁₅ H ₁₆ N ₂ S ₂ O	60	yellow	206-8	59.20	5.26	9.21	21.05
					58.9	5.1	9.2	21.1
<u>12b</u>	$C_{15}H_{16}N_2S0_2$	65	yellow	70-2	62.49 62.5	5.55 5.6	9.72 9.8	11.1 11.1
13a	C ₁₅ H ₁₄ N ₂ S ₂ O	68	yellow	90-2	59.60	4.30	9.27	21.19
134	C151114112520	00) Jenow	70 2	59.3	4.3	9.0	21.2
<u>15a</u>	C ₁₅ H ₁₄ N ₂ S ₂ O ₃	70	yellow	167-9	53.89	4.19	8.38	19.16
					53.9	4.2	8.4	19.1
<u>15b</u>	$C_{17}H_{18}N_2S_2O_3$	72	yellow	136-8	56.35 56.4	4.97 5.0	7.73 7.8	17.67 17.7
15c	C ₁₆ H ₁₆ N ₂ S ₂ O ₃	73	yellow	150-2	55.17	4.59	8.04	18.39
1 200	01611161125203	, , ,	,		55.2	4.7	8.0	18.4
<u>15d</u>	C ₁₅ H ₁₅ N ₃ S ₂ O ₂	75	yellow	130-2	54.05	4.50	12.61	19.21
					54.0	4.5	12.7	19.3
<u>15e</u>	C ₁₆ H ₁₄ N ₂ SO ₄	78	yellow	103-5	58.18 58.1	4.24 4.2	8.48 8.5	9.69 9.7
15f	C ₁₇ H ₁₈ N ₂ SO ₄	72	vellow	145	58.95	5.20	8.09	9.24
	01/118112504		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	58.9	5.1	8.0	9.3
<u>15g</u>	$C_{16}H_{16}N_2SO_4$	75	yellow	160-2	57.48	4.79	8.38	9.58
					57.5	4.8	8.4	9.6
<u>15h</u>	$C_{15}H_{15}N_3SO_3$	74	pale yellow	200-1	56.78 56.8	4.73 4.8	13.24	10.09 10.1
17a	C ₁₅ H ₁₂ N ₂ S ₂ O ₃	80	yellow	172	54.21	3.61	8.43	12.27
	-13-12-2-2-3		Ĺ	<u> </u>	54.1	3.7	8.5	12.3
<u>17b</u>	$C_{15}H_{12}N_2SO_4$	72	yellow	176	56.96	3.79	8.86	10.12
10-	G 11 N 0 0	(0)	11	104.5	56.9	3.8	8.9	10.2
<u>18a</u>	$C_{17}H_{12}N_2S_2O_3$	68	yellow	194-5	57.30 57.4	3.37	7.86 7.9	17.97 18.0
<u>18b</u>	C ₁₇ H ₁₂ N ₂ SO ₄	70	pale	180-2	59.99	3.52	8.23	9.41
100	1 01/11/211/2504	'`	yellow	""	60.0	3.6	8.1	9.4

^{* -} Solvent of Crystallization is Ethanol

itered). The reaction products obtained after cooling were poured onto ice-cold water then acidified with conc. HCL (5 ml). The solid products obtained were filtered off, washed with water then crystallized from ethanol to give $\underline{15a}-\underline{d}$ and $\underline{15e}-\underline{h}$ respectively (cf. Tables I and II).

Cyclization of 15a-d and 15e-h: (General Procedure)

A solution of each of 15a-d or 15e-h (0.01 mole) in ethanol (30 ml) was treated with KOH (0.01 mole) and the reaction mixture was heated under reflux for 5 h then poured and rendered acidic using conc. HCl. The solid obtained was filtered off, washed with water then crystallized from ethanol to give 17a and 17b respectively (cf. Tables I and II).

TABLE II
IR and 'H NMR spectral data

Сотр.	IR (KBr,cm ⁻¹)	¹ H-NMR (DMSO ₆ ,CDCl ₃ δ ppm)
<u>5a</u>	3250 (NH); 3090 (CH aromatic); 2980 (CH sat); 2210 (CN); 1700 (CO acetyl); 1625 (C=N); 1600 (C=C); and 1540 (C=S).	1.25 (s, 3H, CH ₃); 2.5(s, 3H, CH ₃ -CO); 4.8 (s, 1H, NH); 4.1 (d, 1H, pyridine H-4); 4.4 (d, 1H, pyridine H-3); and 6.5-6.7 (m, 3H, thienyl).
<u>6a</u>	3281 (NH); 3065 (CH aromatic); 2951 (CH sat.); 2222 (CN); 1699 (CO acetyl); 1625 (C=N); 1600 (C=C); and 1545 (C=S).	1.3 (s, 3H, CH ₃); 2.5(s, 3H, CH ₃ -CO); 4.9 (s, 1H, NH) and 6.4-6.8 (m, 3H, thienyl).
<u>10a</u>	3400, 3330, 3280 (NH ₂ and NH), 3100 (CH) aromatic); 2985 (CH sat); 1699 (CO acetyl); 1620 (C=N) and 1600 (C=C).	1.2 (s, 3H, CH ₃); 2.4(s, 3H, CH ₃ -CO); 4.9 (br, 3H, NH ₂ and NH); 4.2 (d, 1H, pyridine H-4); 4.4 (1H, pyridine H-3); and 6.3-6.6 (m, 3H, thienyl).
<u>11a</u>	3400, 3330, 3280 (NH ₂ and NH); (CH aromatic); 2970 (CH, sat.); 1699 (CO acetyl); 1620(C=N); 1600 (C=C) and 1540 (C=S).	1.4 (s, 3H, CH ₃); 2.5 (s, 3H, CH ₃ -CO); 4.8 (br, 3H, NH ₂ and NH) and 6.5-6.8 (m, 3H, thienyl).
<u>12b</u>	3070 (CH, aromatic); 2975 (CH, sat.); 2210 (CN); 1699 (CO-acetyl); 1625 (C=n); 1600 (C=C); and 1540 (C=S).	1.2 (s, 3H, CH ₃); 2.5 (s, 3H, CH ₃ -CO); 1.5 (t, CH ₂ -CH ₃); 2.2 (q, 2H, CH ₂ -CH ₃); 4.2 (d, 1H, pyridine H-3); 4.5 (d, 1H, pyridine H-4); 6.6-6.9 (m, 3H, furyl).
13a	3080 (CH aromatic); 2985 (CH, sat.); 2220 (CN); 1698 (CO-acetyl); 1625 (C=N); 1600 and (C=C).	1.2 (s, 3H, CH ₃); 2.5 (s, 3H, CH ₃ -CO); 1.5 (t, CH ₂ -CH ₃); 2.5 (2H, CH ₂ -CH ₃) and 6.5-6.7 (m, 3H, thienyl).

Reaction of Acetic Anhydride with 17a,b: (General Procedure)

A mixture of each of $\underline{17a,b}$ (0.01 mole) and acetic anhydride (20 ml) was heated under reflux for 5 h. The product obtained after cooling was filtered off and crystallized from ethanol to give $\underline{18a,b}$ respectively (cf. Tables I and II).

TABLE II (Continued)

Comp.	IR (KBr,cm ⁻¹)	1 _{H-NMR} (DMSO ₆ , CDCl ₃ 8 ppm)
15a	3400-2400 (OH acid);3090 (CH aromatic); 2980 (CH, sat.); 2210 (CN); 1730 (CO-acid); 1696 (CO acetyl); 1620 (C=N); and 1600 (C=C).	1.1 (s, 3H, CH ₃); 2.5 (s, 3H, CH ₃ -CO); (d, 1H, pyridine H-4); 4.4 (d, 1H, pyridine H-3); 6.4-6.7 (m, 3H, thienyl) and 10.7 (s, 1H, acid).
<u>15c</u>	3070 (CH aromatic); 2950 (CH, sat.); 2222 (CN); 1728 (CO,ester); 1699 (CO acetyl); 1625 (C=N); and 1600 (C=C).	1.2 (s, 3H, CH ₃); 2.1 (s, 3H, CH ₃ -CO); 3.1 (s, 3H, CH ₃ -O-CO); 3.3 (s, 2H, S-CH ₂ -CO); 4.1 (d, 1H, pyridine H-4); 4.4 (d, 1H, pyridine H-3) and 6.6-6.8 (m, 3H, thienyl).
<u>15f</u>	3080 (CH aromatic); 2975 (CH, sat.); 2210 (CN); 1730 (CO,ester); 1700 (CO acetyl); 1620 (C=N); and 1600 (C=C).	1.1 (s, 3H, CH ₃); 2.5 (s, 3H, CH ₃ -CO);1.5(t,CH ₂ -CH ₃); 2.5-(q,2H CH ₂ -CH ₃); 4.1 (d, 1H, pyridine H-3); 6.6-6.8 (m, 3H, furyl).
<u>17a</u>	3496-3369(NH ₂) 3300- 2400 (OH acid);3090 (CH aromatic); 2975 (CH,sat.);1697(COacetyl) ;1647 (CO-acid hydrogen bonding); 1620 (C=N); and 1600 (C=C).	1.2 (s, 3H, CH ₃ at pyridine); 2.2 (s, 3H, CH ₃ - CO); 5.1 (s, 2H, NH ₂); 6.6-6.8 (m, 3H, thienyl) and 10.6 (s, 1H, acid).
<u>18b</u>	3100 (CH aromatic); 2980(CH sat.);1757 (CO oxazinone);1697(CO acetyl);1620(C=N) and (C=C)	1.1(s,3H,CH ₃ at pyridine); 1.5 (s, 3H, CH ₃ oxazinone); 2.2(s,3H,CH ₃ -CO) and 6.5-6.8(m,3H,furyl).

REFERENCES

- 1. B. Y. Riad, S. E. Abdou, F. A. Attaby and S. A. Mansour, Sulfur Lett., 6, 105 (1987).
- 2. A. O. Abdelhamid and S. E. Abdou, Sulfur Lett., 6, 41 (1987).
- 3. B. Y. Riad and S. M. Hassan, Sulfur Lett., 10, 1 (1989).
- 4. S. M. Eldin, N. G. Miccheal and F. A. Attaby, Egypt, J. Pharm Sci., 34, 805 (1993).
- F. A. Attaby, L. I. Ibrahim, S. M. Eldin and A. K. K. El-Louh, Phosphorus, Sulfur and Silicon, 73, 127 (1992).
- N. A. Ismail, S. M. Eldin, F. A. Attaby and M. B. A. Abou-Abdou, Egypt, J. Pharm. Sci., 33, 983 (1992).
- 7. B. Y. Riad and M. A. Abdel-Aziz, Sulfur Lett., 9, 175 (1989).
- N. A. Ismail, S. M. Eldin, F. A. Attaby and M. B. A. Abou-Abdou, Pakistan, J. Sci. Ind. Res., 35, 165 (1992).

- 9. B. Y. Riad, A. M. Negm, S. E. Abdou and H. A. Daboun, Heterocycles, 26, 205 (1987).
- 10. G. Lohaus and W. Dittmar, S. Afric. Patent, 6 906 036 (1968); C. A., 73, 120308 (1988).
- 11. G. A. Youngdale, U.S. Patent, 4 288 440 (1980); C. A., 96, 6596c (1982).
- 12. A. H. Todd, Br. Patent, 11 203 149 (1970); C. A., 73, 120508b (1970).
- 13. J. Gante and S. Lust, Ger. Offen., 1908 947 (1970); C. A., 73, 1205010 (1970).
- H. Meyer, R. Sitt, G. Thomas and H. P. Krause, Ger. Offen., 3015 219 (1980); C. A., 96, 6604d (1980).
- A. Krauze, R. Vitolina, M. R. Romanova and G. Duburs, Khim. Fam. Zh. (Russ.), 22, 955 (1988);
 C. A., 109, 204604 (1988).
- 16. J. S. A. Brunskill, A. De and D. F. Ewing, J. Chem. Soc. Perkin Trans., I, 629 (1978).